(('5

CapisclO: An Agent Trust
Network For The MCP and
A2AEra

Building Trust Infrastructure for Autonomous Al Agents

CCCCCCCCCCCCCCCCCCCCCCCCC

Revision 2.0

Table of Contents

Front Matter
Abstract

In 60 Seconds
Who Should Read This

Executive Summary

1. From Models To Agents: Why Trust Breaks
1.1 The Shift To Agentic Systems

1.2 The New Risk Surface
1.3 The Core Problem In One Line

2. Protocols Without Trust: The Architectural
Gap

2.1 The Emerging Stack And Its Limits
2.2 Checklist For An Agent Trust Network

3. Design Principles, Threat Model, And Non
Goals

Trust Assumptions
What CapisclO Protects Against

Non Goals

4. CapisclO Architecture
4.1 The Agent Trust Network

4.2 Trust Badges

4.3 Performance And Deployment
Considerations

5. Mapping CapisclO To The OWASP Agentic
Top 10

CapisclO White Paper ¢ Rev 2.0

6. Operationalizing WEF Governance In
Practice

6.1 Governance Tiers

7. Reference Scenarios

7.1 Compromised Automation Agent Failure
Mode

7.2 Cross Vendor Multi Agent Workflow

7.3 Compliance And Audit View

8. Adoption Path And Coexistence
8.1 Start Narrow

8.2 Expand Scope
8.3 Coexistence With Existing Stacks

8.4 Deployment And Cost Models

9. Roadmap And Ecosystem
9.1 Standards Alignment And Open RFCs

9.2 Future Capabilities
9.3 Call To Action

Appendix A. Commentary On Remaining
OWASP Agentic Risks

Prompt Injection And Manipulation
Data Leakage And Exfiltration
Model And Tool Supply Chain Risks
Unsafe Tooling And Actuation
Misalignment And Goal Drift

Privacy And Compliance Gaps

)

Abstract

Autonomous Al agents are moving from prototypes into production workflows that touch customers,
money, and critical systems. Standards such as the Model Context Protocol (MCP) and Google's
Agent-to-Agent Protocol (A2A) are rapidly becoming the default way to connect agents to tools,
data, and each other. They solve interoperability, but they do not solve trust.

The World Economic Forum and the OWASP Agentic Top 10 both highlight the same tension.
Organizations are expected to embrace agentic systems while also maintaining strong identity, least
privilege, and auditability across a growing mesh of non human actors. Without a dedicated trust
layer, teams are forced to bolt agent identity onto IAM systems that were designed for human users
and session based applications.

CapisclO is an agent trust network built for this new stack. Think of it as "Let's Encrypt for Al
agents" — it provides per agent DID-based identity, an attested registry for agent descriptors with
progressive Trust Levels (0-3), and runtime enforcement that works across MCP, A2A, and existing
enterprise security controls. Agents carry short lived Trust Badges (signed JWTs) that prove who
they are, what they are allowed to do, and under whose authority they are acting.

The system is delivered as production-ready tooling: Guard for runtime verification (available as SDK
middleware), a CLI (pip install capiscio) for validation and badge operations, and an optional managed
registry for organizations that want a hosted trust backbone. Developers can generate their first
agent identity in under 60 seconds.

This whitepaper describes the problem, the architectural gap above MCP and A2A, the design
principles behind CapisclO, and how its architecture maps concretely to the OWASP Agentic Top 10
and WEF governance guidance. It concludes with reference scenarios and an adoption path that
allows teams to start narrow and grow into a multi agent, cross organization trust fabric.

Technical Specifications: The full technical design is published in open RFCs. RFC-001 defines the Agent
Governance Control Plane (AGCP). RFC-002 defines Trust Badges and DID-based identity. RFC-003
defines the Key Ownership Proof (PoP) protocol. All are available at docs.capisc.io/rfcs.

CapisclO White Paper ¢ Rev 2.0

In 60 Seconds

The gap: MCP and A2A solve agent interoperability. They do not solve trust.

The solution: CapisclO provides per-agent DID-based identity, short-lived Trust Badges, and
runtime enforcement via Guard.

Start now:
pip install capiscio && capiscio key gen

Upgrade to production-grade did:web identities when ready.

Who Should Read This

CISOs / Security Leaders Identity, risk, and auditability for autonomous agents

CTOs / Platform Heads Architecture for agents across products and internal platforms
Agent Builders Verifiable identity that integrates with enterprise security
Governance / Risk Standards-aligned oversight with progressive Trust Levels

Executive Summary

Organizations are moving from single model chat interfaces to fleets of autonomous agents that plan, act,
and coordinate with each other. These agents are being wired into production systems through emerging
standards such as the Model Context Protocol (MCP) and Google's Agent-to-Agent Protocol (A2A), with
direct impact on customers, money, and critical operations.

This shift breaks traditional trust models. Existing IAM and security tools were designed for human users
and monolithic applications, not for non human actors that make decisions and act at machine speed. The
World Economic Forum and the OWASP Agentic Top 10 both highlight the same concern: without clear
identity, least privilege, and accountability for agents, organizations risk invisible privilege escalation,
uncontrolled delegation, and opaque incidents that are difficult to investigate.

CapisclO is an agent trust network designed for this new stack. Think of it as "Let's Encrypt for Al
agents" — it provides the same progression from self-signed credentials to domain-validated certificates
that transformed web security, but for autonomous agents. The system combines production-ready
tooling that runs close to agents with an optional managed registry for organizations that want a hosted
trust backbone.

The core components are:

CapiscIO White Paper ¢ Rev 2.0 4

e Guard — Runtime verification middleware (Python SDK: pip install capiscio-sdk) that verifies agent
identity, checks Trust Levels, and logs decisions on every request.

e CLI — Developer tooling (pip install capiscio) for key generation, badge operations, agent card
validation, and trust scoring.

e Registry — Optional managed service for badge issuance, agent discovery, and cross-
organization trust anchoring.

CapisclO delivers four core capabilities:

e Per agent identity and least privilege. Each agent has a verifiable DID-based identity and receives
short lived, scoped badges rather than long lived, shared credentials.

e Attested registry and provenance. Agent descriptors and capabilities are ingested into a neutral
registry that records provenance, verification status, and risk relevant metadata.

¢ Runtime enforcement via Guard. Every inbound request is verified: identity checked, signature
validated, Trust Level enforced, decision logged.

e Tamper evident audit and incident support. Actions are tied to specific agents, badges, and
policies, producing evidence that can be used for internal investigations, customer communication,
and regulators.

The timing matters. OWASP has codified agent identity and attested registries as key mitigations for risks
such as ASIO3 (identity and privilege mismanagement), ASIO7 (insecure inter agent communication), and
ASI10 (rogue agents). The WEF “Al Agents in Action” paper calls for progressive governance models that
recognize different levels of autonomy and authority. CapisclO provides a concrete way to implement
these expectations in real systems.

Adoption is incremental. A developer can install the CLI, generate a keypair, and have a working agent
identity in under 60 seconds:

pip install capiscio
capiscio key gen

Teams can start by applying Guard to a single agent or workflow, then expand to multiple agents and
cross organization scenarios as confidence grows. Because CapisclO coexists with existing IAM, key
management, gateways, and observability tools, it can be introduced without a disruptive rebuild of the
security stack.

For organizations that intend to run agentic systems at scale, the question is no longer whether a trust
layer is needed, but what shape it should take and how quickly it can be deployed. This whitepaper
argues that the combination of per agent identity, scoped badges, runtime enforcement, and an attested
registry is the right foundation, and describes how CapisclO implements it in practice.

CapiscIO White Paper ¢ Rev 2.0 5

1. From Models To Agents: Why Trust Breaks

1.1 The Shift To Agentic Systems

Large language models entered organizations as chat interfaces and copilots. They were treated as
powerful but contained components that augmented human workflows inside existing applications.

Agentic systems are different. Instead of responding to a single prompt, agents can:

Plan multi step tasks.

Choose and invoke tools over protocols such as MCP.

Coordinate with other agents through protocols such as A2A.

Act continuously in the background on behalf of users or systems.

The World Economic Forum describes this as a shift from standalone Al systems to agents that behave as
integrated collaborators inside business processes, products, and infrastructure. The agent is no longer
an isolated component. It is a non human actor embedded into workflows that span multiple teams,
systems, and organizations.

This shift increases leverage, but it also changes the control problem. When agents can initiate actions,
not just suggest them, teams must care about:

* What an agent is allowed to do without human approval.
* How it chooses which tools and data sources to use.

e How its decisions and actions are tracked over time.

As organizations move from experiments to production deployments, the question is no longer “can we
build an agent that works in a demo."” It is "how do we operate many agents safely and predictably in
production systems.”

1.2 The New Risk Surface

Agentic systems reuse existing infrastructure, but they reshape the risk surface.

The OWASP Agentic Top 10 highlights several recurring problems:

Agents sharing credentials or roles, making it hard to distinguish benign activity from abuse.

Unclear ownership and lifecycle for agents, tools, and descriptors.

Insecure communication between agents that trust any caller that can reach an endpoint.

Limited ability to contain or revoke a misbehaving or compromised agent once it is deployed.

The World Economic Forum reaches similar conclusions from a governance perspective. As agents cross
organizational boundaries and operate in complex environments, they argue that:

CapiscIO White Paper ¢ Rev 2.0 6

¢ Traditional perimeter models are insufficient.
e Zero trust principles must be applied to agents, not only to users and services.

e Every agent should have a unique identity and be traceable, with outputs and actions attributed
back to specific agents and policies.

e Governance needs to be progressive, with stricter controls for agents that have higher autonomy,
authority, or systemic impact.

The common thread is that agents turn “identity and access management” into a multi dimensional
problem:

e |dentities are no longer only human.
e Access is dynamic and context dependent, varying by task, environment, and delegation.

e The consequences of a single misconfigured or compromised agent can propagate quickly
through toolchains and partner ecosystems.

Simply logging more data or adding more prompts does not solve this. Organizations need an explicit way
to express and enforce who agents are, what they are allowed to do right now, and under whose authority
they are acting, across the protocols and vendors they have already adopted.

1.3 The Core Problem In One Line

Protocols gave us a way for agents to talk to tools and to each other. What is still
missing is a shared trust fabric that answers three basic questions for every action: who
is this agent, what are they allowed to do right now, and under whose authority are
they acting.

CapiscIO White Paper ¢ Rev 2.0 7

2. Protocols Without Trust: The Architectural Gap

2.1 The Emerging Stack And Its Limits

The emerging stack for agentic systems is starting to solidify:

e MCP for connecting agents to tools and data sources.
e A2A for discovering agents, exchanging agent cards, and coordinating across ecosystems.

e Payment and transaction protocols for economic flows between agents and systems.

These standards solve interoperability. They define how agents discover tools, exchange messages, and
transact. They do not define trust.

In particular, they do not provide:

e Strong per agent identity that is verifiable across organizations.

e A consistent way to express and enforce least privilege for agents and their tools.
e A neutral, attested registry for agent descriptors and provenance.

¢ Signed delegation chains that answer “who is acting on whose behalf.”

e A portable audit model that survives across runtimes, frameworks, and vendors.

These are deliberate gaps. Protocols stay simple by leaving trust semantics to higher layers. Without a
dedicated trust layer, each organization ends up re inventing partial solutions inside individual platforms,
which leads to inconsistent controls and blind spots.

2.2 Checklist For An Agent Trust Network

An agent trust network must close those gaps without breaking the underlying protocols. In practice, that
means providing at least the following capabilities:

e Per agent, DID-based identities using W3C Decentralized Identifiers (d¢id:key for development,
did:web fOr production) that can be verified across environments and organizations.

e Shortlived, scoped credentials that express what an agent is allowed to do, where, and for how
long.

¢ An attested registry of agents and descriptors that records provenance, capabilities, verification
status, and other risk relevant metadata.

e Explicit delegation and trust chains that describe which agents may act on behalf of which
principals or systems.

¢ Policy evaluation and enforcement at enforcement points such as gateways and orchestrators,
not only inside application code.

e Tamper evident audit trails that tie actions to specific agents, credentials, and policies in a way
that can be used for incident response and regulatory review.

CapiscIO White Paper ¢ Rev 2.0 8

These checklist items inform the design of CapisclO. They are the minimum conditions under which
organizations can treat autonomous agents as first class identities with explicit privileges, rather than
opaque processes with implicit access.

Why not just use OAuth, SPIFFE, or service mesh identity?

These are excellent tools — and CapisclO is designed to work alongside them, not replace them. The
gap they leave is agent-specific:

e OAuth assumes a human in the loop for consent flows. Agents act autonomously at machine speed.

» SPIFFE/SPIRE provides workload identity, but not the progressive trust levels, delegation chains, or agent-
specific registry that multi-agent systems require.

» Service mesh mTLS authenticates services, not the specific agent instance, its capabilities, or who authorized
it to act.

CapisclO adds the layer above: per-agent identity with scoped, short-lived badges that express what
this agent is allowed to do right now, not just which service is calling.

CapiscIO White Paper ¢ Rev 2.0 9

3. Design Principles, Threat Model, And Non Goals
CapisclO is designed around three principles:

e Humans write the rules; agents carry the proof. Governance decisions remain with people.
Agents must be able to prove their identity, authority, and compliance autonomously.

¢ Neutral, protocol native, developer first. CapisclO is built to work across MCP, A2A, clouds, and
vendors without forcing a specific runtime or provider. It should feel like natural tooling for
engineers, not an external audit requirement bolted on later.

* Trust as a graph, not a toggle. Trust is modeled as levels, delegation chains, revocation, and
reputation over time, not a simple “trusted or untrusted” flag. It is designed for multi agent
topologies and cross organization flows.

Given these principles, CapisclO makes the following assumptions and deliberately scoped choices about
what it protects against and what it does not.

Trust Assumptions

CapisclO assumes:

e Baseline infrastructure security is in place. The underlying compute, networking, and storage
environments follow standard hardening practices and are operated by a competent security team.

e Enterprise IAM exists and continues to govern human identities and access to core systems.
CapisclO does not replace corporate directories or SSO.

e Model selection and tuning are handled upstream. Organizations are responsible for choosing
appropriate models and training regimes for their use cases.

e Organizational governance exists. There are defined owners for risk, compliance, and incident
response who can define policies and act on CapisclO telemetry.

Given these assumptions, CapisclO focuses on agent identity, authority, and evidence of behavior across
protocols and runtimes.

What CapisclO Protects Against

CapisclO is designed to materially reduce:

 Identity and privilege abuse by agents. Each agent has its own cryptographic identity and scoped
privileges instead of sharing keys or roles.

e Untrusted or spoofed agents. Agents must present verifiable Trust Badges that can be checked
against an attested registry before being allowed to act.

¢ Uncontrolled delegation and transitive trust. CapisclO enforces explicit delegation chains so that
one agent cannot silently act with another party's authority.

CapisclO White Paper ¢ Rev 2.0 10

e Lack of provenance and auditability. Actions are tied back to specific agents, badges, and
policies, creating tamper evident trails for incident response and regulators.

* Rogue or compromised agents staying active. Badges and policies can be revoked centrally,
cutting off further action even if the underlying runtime is still operating.

Non Goals

CapisclO is not intended to solve:

¢ Model quality problems. It does not prevent hallucinations, biased outputs, or poor reasoning. It
can record what the agent did and under what authority, but not guarantee that every decision was
correct.

e User behavior and insider threats. It does not control what human users choose to ask agents to
do, nor does it replace controls on human accounts.

e Endpoint and host compromise. If the host environment that runs an agent is fully compromised,
CapisclO cannot prevent all abuse. It can limit blast radius through short lived badges and scoped
privileges, and it can provide evidence of misuse.

¢ Network level attacks outside the agent context. CapisclO is not a firewall, WAF, or DDoS
mitigation service.

* Generalized API gateway or mesh functionality. CapisclO is not a generalized API gateway or
service mesh. It focuses solely on agent trust decisions and assumes traffic routing is handled by
existing infrastructure such as Envoy, Istio, or APl gateways.

¢ Data classification and content scanning. It can integrate with systems that classify or inspect
data, but it does not itself perform deep content inspection.

e Semantic authorization decisions. CapisclO enforces whether an agent may call a tool, not
whether the agent should call it in a specific business context. Constraints such as “do not refund
more than 500 dollars without approval” belong in application policy, orchestration logic, or domain
level guardrails that sit alongside CapisclO.

On Prompt Injection: CapisclO does not prevent prompt injection inside a model. What it does is limit the blast
radius. A compromised agent can only access tools within its badge scope, and forensic reconstruction ties
every action to a specific identity and policy. See Appendix A for detailed commentary on how CapisclO
complements mitigations for the remaining OWASP Agentic risks.

Being explicit about these non goals is important. CapisclO is a focused trust network for agents and
should be evaluated on that basis, alongside complementary controls.

CapiscIO White Paper ¢ Rev 2.0 11

4. CapisclO Architecture

4.1 The Agent Trust Network

CapisclO is a control plane and registry that sits alongside existing agent runtimes, connectivity protocols,
and security infrastructure. It does not replace MCP, A2A, or IAM. It gives them a shared language for
trust.

The Agent Governance Control Plane (AGCP) is the policy layer that governs badge issuance, delegation
chains, and enforcement. AGCP implements the Golden Rule: no agent can take an action that exceeds the
authority of the human or system identity that triggered the workflow. The effective authority at any hop is the
intersection of the originator's scope, every intermediate agent's maximum scope, and the requested action. See
RFC-001 for the full specification.

At a high level, the architecture consists of:

¢ Agents. Autonomous or semi autonomous processes that invoke tools, call APIs, and interact with
other agents. They may run in application servers, orchestration platforms, or dedicated agent
runtimes.

e Gateways and orchestrators. Components that sit on the execution path for agent actions.
Examples include API gateways, MCP servers, LangGraph or similar orchestrators, and custom
middleware. These are the primary enforcement points for CapisclO policies.

e CapisclO control plane. The service that issues and validates Trust Badges, evaluates policies
defined in the Agent Governance Control Plane (AGCP), and records audit events.

e CapisclO Agent Registry. The attested catalog of agents, agent cards, capabilities, and
provenance metadata, ingesting descriptors such as .well-known/agent-card.json and storing them with
verification status and trust level.

e Existing enterprise services. IAM platforms, secret management systems, SIEM and observability
tools, and compliance systems that already exist in the environment.

The Agent Registry ingests agent descriptors, including .well-known/agent-card.json from A2A, and stores
them with provenance, declared capabilities, verification status, trust level, and risk relevant metadata.
Organizations can maintain public views for ecosystem discovery and private views for internal agents or
sensitive details.

The Agent Governance Control Plane (AGCP) defines policies that govern badge issuance and
enforcement. Policies can target agents, capabilities, routes, environments, or organizations. AGCP also
manages delegation chains and revocation: who may act on whose behalf, and how that authority can be
withdrawn. It emits signed audit events for each decision so that enforcement is explainable after the fact.

Runtime enforcement happens at gateways, sidecars, and orchestrators that sit on the execution path.
These components verify Trust Badges, consult AGCP policies, and enforce the following guarantees:

CapisclO White Paper ¢ Rev 2.0 12

Missing Trace ID or Badge - Automatic deny.

Forged Badge (signature mismatch) - Deny + security alert.

Delegation path not in Trust Graph - Deny.

Scope intersection resolves to empty set > Deny.

Teams can configure fail static, fail closed, or fail open behavior for transient unavailability. In practice,
this means that most trust decisions are made where traffic already flows, rather than being pushed into
application code.

The typical request flow is:

Instantiate Request Badge Present & Verify Audit

Agent started by orchestrator Get scoped Trust Badge from Badge verified at gateway Signed events recorded
control plane

The CapisclO control plane and registry appear as a horizontal trust layer that multiple agent runtimes,
MCP servers, and A2A ecosystems plug into. This allows organizations to express trust decisions once,
then enforce them consistently across diverse agent frameworks and vendors. This includes agents built
on different LLM providers, orchestration frameworks, and cloud platforms. CapisclO is intentionally
runtime agnostic.

Agent Runtime A Agent Runtime B Agent Runtime C
MCP Server A2A Endpoint API Gateway
CapisclO Trust Layer

) Trust Badges 5o Policy (AGCP)
) l L
J A
Key Management

Enterprise IAM SIEM / Observability

(Vault/KMS)

Figure 1: CapisclO Trust Layer in an Agentic Architecture

CapiscIO White Paper Rev 2.0 13

4.2 Trust Badges

Trust Badges are the core identity primitive in CapisclO. Think of them as "SSL certificates for Al agents"
— short lived, cryptographically signed credentials that prove who an agent is, who vouches for it, and
what it is allowed to do.

Technically, a Trust Badge is a signed JSON Web Token (JWS) using EADSA (Ed25519) signatures. Each
badge contains:

Example Trust Badge payload

{
"jti": "badge-550e8400-e29b-41d4-a716-446655440000",
"iss": "did:web:registry.capisc.io",
"sub": "did:web:example.com:agents:my-agent",
"aud": ["https://api.acme.com"],
"iat": 1735300000,
"exp": 1735303600,
"trust_level": 2,

"ial": 1,
"enf': {

"kid": "did:web:example.com:agents:my-agent#key-1"
+

I

Key fields include:

sub (Subject). The agent's DID (Decentralized Identifier), using did:key for development or did:web
for production.

iss (Issuer). The Certificate Authority that signed the badge — the CapisclO Registry for
production badges.

exp (Expiry). Short TTL, defaulting to 1 hour (5 minutes for high-security scenarios). Short lifetimes
limit blast radius.

e trust_tevel . The Trust Level (0-3) indicating validation rigor.

ial (ldentity Assurance Level). O for account-attested, 1 for proof-of-possession (PoP) verified
per RFC-003.
ot (Confirmation). Key binding that proves the presenter controls the private key.

CapisclO White Paper ¢ Rev 2.0

Trust Levels

Trust Levels mirror the SSL certificate model that web developers already understand:

Level Name Verification Best For

0 Self-Signed (SS) None — did:key only Development, testing

1 Registered (REG) Email/account verification Personal projects, internal tools
2 Domain Validated (DV) DNS/HTTP challenge Production APIs, public agents
3 Organization Validated (OV) Legal entity verification Enterprise, financial, healthcare

CapisclO 5 Trust Levels: Vertical Progression

Extended Validated (EV)
Manual review + legal agreement)
_SSL analogy: EV centificate |

Level 4

Organization Validated (OV)

Level 3 Legal entity verified

| SSL analogy: OV certificate

Domain Validated (DV) .
=)
Level 2 T > Production ready
(SSL analogy: DV certificate
1\ = ,
2 Registered
0=
Level 1 =) Account with Capiscl0] 2 _
o SSL analogy: Let's Encrypt staging :]
Level 0 Self-Signed ® 60 seconds (Quick Start)

did:key, no verification
| 8SL analogy: Self-signed cert |

Figure 3: Trust Levels — From Self-Signed to Organization Validated

Developers can start with Level O (did:key) for local development — run capiscio key gen in ,
no registration required. For production, they upgrade to did:web With domain validation (Level 2), which
provides verifiable domain binding. Level 3 (Organization Validated) requires legal entity verification for
enterprise and regulated use cases.

DID Methods

CapisclO uses W3C Decentralized Identifiers for agent identity:

e did:key — Self-describing identity derived from the public key. Zero friction for development:
generate a keypair and you have an identity. No hosting or registration required.

CapiscIO White Paper Rev 2.0 15

® did:web — |dent|ty resolved via HTTPS. Production grade: did:web:registry.capisc.io:agents:my-agent
resolves to a DID Document at nttps://registry.capisc.io/agents/my-agent/did.json .

Agents can migrate from did:key tO did:web as they move from development to production, and can even
self-host their DID Documents to eliminate vendor lock-in.

Badge Lifecycle

Trust Badges are issued by the CapisclO Registry based on verification status. Agents can obtain badges
through several methods:

e Self-signed (Level 0): Run capiscio badge issue —self-sign fOr immediate development use.

e Domain Validated (Level 2): Complete DNS or HTTP challenge via capiscio badge request —-level 2 —domain

example.com .

* Proof of Possession (PoP): RFC-003 compliant challenge-response flow that proves key
ownership without exposing the private key.

Badge TTLs default to @ The SDK's Badgekeeper component handles automatic renewal in the
background. If an agent is compromised:

e Existing badges expire within minutes.

e The security team can revoke badge issuance instantly — propagation takes less than

=D

e All actions are tied to specific badge IDs (jti) for forensic reconstruction.

At runtime:

e When an agent calls a tool over MCP or initiates an A2A interaction, it presents a Trust Badge
alongside the request.

e The receiving side verifies the badge signature, checks expiry and revocation status, and consults
policy.
e If the badge is invalid, expired, revoked, or out of scope, the call is denied.

For the full technical specification, see RFC-002 (Trust Badge Specification).

4.3 Performance And Deployment Considerations

CapisclO is designed to add strong trust guarantees without imposing prohibitive latency or operational
complexity.

Where Verification Happens

Typical deployment patterns place CapisclO verification at:

e Gateways and sidecars that sit in front of MCP servers or HTTP based tools.

CapiscIO White Paper ¢ Rev 2.0 16

e Agent orchestrators that manage multi step workflows and can enforce badge checks before each
external call.

e Edge policies in existing APl gateways or service meshes that integrate with CapisclO as an
external authorization service.

In each case, verification consists of checking a signed badge against trusted keys, validating claims, and
optionally querying the registry for revocation or additional metadata.

Latency Envelope

In internal benchmarks, badge verification and policy evaluation add well under a millisecond of overhead
on a warm cache. Signature verification and claim checks are performed locally using cached keys and
policies.

In the worst case, when caches are cold and a remote registry or policy fetch is required, the additional
latency to verify a badge and evaluate policy is expected to be on the order of a few milliseconds at the
gateway.

Registry lookups for revocation and enrichment can be cached with short lifetimes to avoid introducing
round trips on every call. Initial badge issuance may incur a round trip to the CapisclO control plane if no
valid badge is cached. Subsequent requests within the TTL window use cached credentials and only
perform local verification.

Scaling And High Availability

CapisclO is built to scale horizontally:

e Badge issuance and registry queries are stateless operations behind load balancers.
e Audit streams can be integrated with existing logging and SIEM pipelines.

¢ Policy evaluation can be replicated across regions, which ensures that local gateways have access
to the same decisions.

If CapisclO is temporarily unavailable:

e Existing badges continue to function until expiry.

e Teams can choose one of three behaviors per workflow:

e Fail static — continue using the last known good policy and trust configuration.

e Fail closed - deny requests that require CapisclO decisions while recording the failures.

e Fail open - permit requests but log them for later review.

Badges issued in one region are valid globally. Verification only requires access to public keys and
cached revocation state, not live connectivity to the issuing region. This allows large organizations to run
CapisclO in a multi region, multi cloud topology without creating new central points of failure.

Making these behaviors explicit allows security leaders and architects to choose appropriate trade offs
rather than inheriting undocumented defaults.

CapiscIO White Paper ¢ Rev 2.0 17

5. Mapping CapisclO To The OWASP Agentic Top 10

The OWASP Agentic Top 10 identifies ten major risk categories for agentic applications. CapisclO most
directly addresses four of them, where identity, privilege, and inter agent trust are central.

OWASP risk Key mitigation focus
ASIO3: Agent Identity and Per agent identities, least privilege, short
Privilege Mismanagement lived credentials, isolation of contexts

ASI04: Agent Supply Chain Integrity and provenance of agent
and Descriptor Tampering descriptors and configurations

ASIO7: Insecure Inter Agent Authenticated and authorized
Communication communication between agents,
verification of counterpart identity

ASI10: Rogue or Detection, containment, and revocation
Compromised Agents for misbehaving or hijacked agents

CapisclO mechanism

Trust Badges, AGCP policies, per agent
scopes, environment aware badge issuance

Agent Registry with trust levels, domain
verification, signed agent cards, provenance
tracking

Badge verification on agent to agent calls,
registry backed trust decisions, PKI rooted
trust model

Central revocation of badges, policy driven
containment controls, signed behavioral
manifests, tamper evident audit trails

This section focuses on the four OWASP Agentic Top 10 risks that are most directly addressed by an
agent trust network. The remaining six risks are influenced by organizational processes, model behavior,
and application design. Appendix A provides commentary on how CapisclO can complement mitigations

for those categories without claiming to fully solve them.

CapisclO White Paper ¢ Rev 2.0

6. Operationalizing WEF Governance In Practice

The World Economic Forum proposes classifying agents along several dimensions, including function,
autonomy, authority, and environment complexity. These dimensions inform how much governance rigor
an agent requires. CapisclO operationalizes this by mapping agents to three governance tiers, each with

progressively stricter controls.
6.1 Governance Tiers

Tier Example agent

Baseline Internal status reporting bot
that summarizes metrics
into a Slack channel

Enhanced Customer support agent
with limited refund
authority and access to
customer records

Systemic Cross organization
procurement orchestrator
coordinating multiple
vendors and approval flows

Governance objectives

Ensure basic traceability
and accountability for
agent actions

Enforce least privilege,
explicit delegation, and
strong provenance for

sensitive operations

Maintain system level
resilience, cross
organization trust, and
robust incident response

CapisclO focus

Unique agent identifiers and basic local logging
via the Guard SDK (pip install capiscio-sdk),
with optional coarse scoped badges and registry
entries where needed

Fine grained badge scopes, environment specific
audiences, delegation chains in AGCP, attested
registry metadata, integration with IAM and SIEM

Cross domain policy graph, multi tenant registry
views, governor and auditor agents backed by
CapisclO, organization level revocation and
containment controls, evidence suitable for
regulators and third party auditors

In practice, most organizations will operate agents at multiple tiers at once. CapisclO is designed to let
teams start at the baseline tier for all agents, then selectively enable enhanced and systemic controls
where autonomy, authority, or environment complexity justify the additional rigor.

CapisclO White Paper ¢ Rev 2.0

7. Reference Scenarios

7.1 Compromised Automation Agent Failure Mode

A B2B SaaS company deploys an "OpsBot" agent to automate routine operational tasks over MCP. The
agent can:

e Rotate API keys for internal services.
e Trigger database maintenance jobs.

e Post status updates to incident channels.

In the initial deployment, the team takes a pragmatic shortcut:

e OpsBot runs under a shared technical account in the corporate IAM system.
* |t uses along lived API token with broad privileges to multiple internal tools.

e There is minimal separation between staging and production credentials.

An attacker gains a foothold through a misconfigured staging environment and exfiltrates the OpsBot
token. Their goal is to cause service disruption while obscuring their presence.

Over the next 72 hours:

e The attacker uses the token to trigger maintenance jobs on production databases at inappropriate
times.

* They post misleading "all clear" messages to incident channels to slow down response and create
confusion.

* Because actions are tied to the shared technical account, the security team cannot immediately tell
whether OpsBot, a human engineer, or an attacker is responsible.

The impact is service downtime, data inconsistency, and loss of trust with customers. The incident report
reads like a familiar story: shared credentials, over privileged service accounts, and unclear attribution.

With CapisclO in place, OpsBot operates differently:

L4 OpSBOt has its own stable agent |dent|ty (did:web:registry.capisc.io:agents:opsbot) in the CapiSCIO Agent
Registry, tied to a specific owning team and domain with Trust Level 2 (Domain Validated).

[t never holds long lived credentials. For each task, it obtains a short lived Trust Badge (5 minute
TTL) that is scoped to the specific tools and data domains required.

e Staging and production are separate environments, with distinct badge issuance policies and
audiences.

When an attacker compromises staging, they can see that OpsBot exists, but:

CapisclO White Paper ¢ Rev 2.0 20

e Any badges captured from staging are only valid for staging tools and expire within minutes. They
cannot be used against production.

e Production tools reject badges that are scoped to the staging environment or that are expired or
revoked.

e All actions in production that involve OpsBot require valid production scoped badges, which are
issued through a gateway integrated with secure key management and AGCP policies.

f an anomaly is detected in OpsBot behavior:

e The security team can revoke its badge issuance policy in CapisclO. No new valid badges are
issued, which effectively freezes the agent's ability to act.

e Existing badges expire within minutes due to short TTLs (5 minutes for this high-security scenario,
configurable per policy).

e Revocation propagates in under 60 seconds for emergency stops.

e Audit logs tie each sensitive action to a specific badge ID (jti), policy, and environment, which
gives incident responders clear evidence of what happened and when.

Without CapisclO With CapisclO
iy *
G sminTTL
» X=X g ——
@ r Expired

Long-lived x
API Token ‘ ‘
S = |3 e
— o r= (ad
Production Staging Incident Key Production Badge Key
DB Channel Rotation DB Verified Rotation
Shared credentials, broad access, Scoped badges, environment
unclear attribution isolation, rapid revocation

Figure 2: Compromised Agent Scenario — Without vs With Capisc/O

The difference is not that CapisclO prevents all compromise. It is that compromise does not automatically
become a full environment breach, and that attribution and containment are built into the way agents are
allowed to act.

CapiscIO White Paper ¢ Rev 2.0 21

7.2 Cross Vendor Multi Agent Workflow

A global manufacturer adopts agents from multiple vendors to automate its order to cash process:

A Sales Assistant Agent from vendor A collects orders and configures products.

A Risk Assessment Agent from vendor B evaluates credit risk and sanctions exposure.

A Procurement Agent from vendor C coordinates with external suppliers.

A Payments Agent from a bank provided platform initiates invoices and reconciles payments.

Each agent runs on a different infrastructure stack, with different LLM providers and orchestration
frameworks. Without a trust layer, integration relies on:

e Pre shared API keys or static OAuth clients between every pair of systems.
e Custom authentication adapters in each vendor’s platform.

¢ Informal assumptions about which agent is calling which endpoint and why.

Adding, rotating, or offboarding an agent requires touching several systems and coordinating across
vendor boundaries. This creates a brittle web of bilateral trust. Security teams struggle to answer basic
questions like "which non human entities can trigger outgoing payments on behalf of our company.”

With CapisclO in place:

e Each agent, regardless of vendor, has a stable identity in the CapisclO registry that includes its
owning organization, capabilities, and provenance.

e When agents communicate over A2A or tool like APIs, they present Trust Badges that express who
they are, which company they represent, and what scope they are operating under for this
interaction.

e Gateways at the manufacturer’s boundary verify incoming badges against the registry and AGCP
policies, enforcing rules such as “only agents in the approved payments initiators group may
request payment actions for more than 10 000 dollars.”

For cross organization interactions:

e External suppliers and the bank can verify badges against the same or federated registries, rather
than maintaining custom allow lists per integration.

e Delegation chains express that the Payments Agent acts on behalf of the manufacturer for specific
accounts, with expiry and revocation baked in.

CapisclO White Paper ¢ Rev 2.0 22

Bank:
Payments
Agent

Q scope: 5 9 scope: /] E 9 scope: d

) scope: /]

G
risk j C suppliers [»': \\;‘[payments '*r]
Yl J

acts on Y acts on
behalf of 0 behalf of

CapisclO Trust Verification

sales

Manufacturer's Systems

Figure 4: Cross-Vendor Agents with Unified Trust Verification

The net effect is that multi vendor, multi agent workflows feel like they share a single, coherent identity
and trust model, instead of a patchwork of custom authentication glue.

7.3 Compliance And Audit View

An internal audit team is asked to review a suspicious sequence of refunds and payment adjustments that
occurred over a two day period. Regulators want to know:

* Which systems and agents were involved.
e Under whose authority the actions were taken.

¢ Whether controls were bypassed or missing.

In a traditional deployment, investigators would pull logs from multiple systems, try to correlate IPs, user
agents, and ad hoc service accounts, and reconstruct an approximate story.

With CapisclO in place, the audit team can:

e Query the CapisclO registry and audit store for all actions involving the support agent and
payments agent in the relevant time window, filtered by badge scope (for example all actions
involving refunds above a certain threshold).

e See for each action: the agent identity, the Trust Badge used, the AGCP policy that allowed it, and
any human approvals that were linked to the badge issuance.

CapiscIO White Paper Rev 2.0 23

e Verify that the agents were operating within their declared scopes and environments, or identify
cases where there was no valid badge or policy match.

The result is a concise report that:

* Names the specific agents and policies involved, rather than generic service accounts.

e Shows which controls worked as designed and where policy gaps existed.

e Provides evidence that can be shared with regulators or customers without exposing internal
implementation details.

CapisclO does not answer whether every business decision was wise, but it gives auditors a reliable,
tamper evident ledger of who did what, when, and under which explicit authority.

CapisclO White Paper ¢ Rev 2.0 24

8. Adoption Path And Coexistence

8.1 Start Narrow

The lowest friction way to adopt CapisclO is to start with a single agent and a single critical tool or
workflow.

60 Seconds to Your First Identity: Install the CLI and generate a did:key identity with a self-signed badge in
under a minute:

pip install capiscio
capiscio key gen
capiscio badge issue —-self-sign

This is enough to start experimenting with trust flows locally in development mode.

A typical first step looks like this:

¢ Select one agent that already runs in production or a high value pilot, such as a support assistant
or internal automation bot.

* Integrate the Guard SDK into that agent (pip install capiscio-sdk), €nabling badge verification on
inbound requests with just a few lines of code.

e Configure a small number of scopes for that agent, such as read only access to specific APIs, and
enable basic logging of badge issuance and verification events.

This initial integration can often be completed in days rather than months, because it:

e Leaves |IAM, key management, and gateways in place.

e Focuses on one path through the system instead of attempting to model every agent and tool at
once.

e Produces immediate, tangible value in the form of clear identity and auditability for that agent’s
actions.

Once this path is proven, the same pattern can be applied to additional agents.

8.2 Expand Scope

After validating the approach with a single agent and workflow, organizations can gradually expand
CapisclO's scope:

e More agents. Add Trust Badges and registry entries for additional agents, grouping them by
domain or business unit.

e More tools and environments. Introduce environment specific scopes and audiences so that
badges clearly distinguish between staging, testing, and production, and between low risk and
high risk tools.

CapisclO White Paper ¢ Rev 2.0 25

e Cross organization interactions. Extend badge verification and registry lookups to partners,
vendors, or customer facing APIs, so that external agents are held to the same identity and trust

standards.

As scope expands, policy complexity increases, but infrastructure does not need to be rebuilt. Gateways
and orchestrators reuse the same verification logic. IAM, KMS, and SIEM integrations remain unchanged.

The main work becomes governance:

* Defining which classes of agents exist.

e Deciding which governance tier (baseline, enhanced, systemic) applies to each.

e Capturing those decisions as AGCP policies and registry metadata with appropriate trust levels.

8.3 Coexistence With Existing Stacks

CapisclO is designed to complement, not replace, the identity, security, and observability tools that
organizations already operate. The table below summarizes how it relates to common components.

Existing system

Okta, Entra ID,
other IAM
platforms

Cloudflare
Access, API
gateways,
service meshes

HashiCorp Vault,
cloud KMS,
HSMs

Datadog,
Splunk, SIEM
platforms

OPA, Styra, in
house policy
engines

DLP platforms
(Purview,
Nightfall, etc.)

Primary role today

Manage human
identities, device trust,
and access to
applications

Enforce authentication
and authorization at the
network and HTTP
layer

Secure storage and
use of secrets and
keys

Centralize logs,
metrics, and security
events

Evaluate authorization
policies for APIs and
services

Detect and block
sensitive data in transit
or at rest

CapisclO White Paper ¢ Rev 2.0

What CapisclO adds

A parallel identity layer for non
human agents, with per agent
badges and policies that
reference existing IAM groups
and roles where needed

Trust aware decisions for agent
traffic, based on verified badges
instead of IPs or opaque tokens

A policy brain for when and how
agent credentials are
materialized as short lived
badges

High quality, structured events
about agent identity, badges,
policies, and actions

A consistent identity and
capability model for agents that
policies can reference

Agent identity and context as
additional signals for DLP policy
decisions

Integration pattern

IAM remains the source of truth for
humans. CapisclO policies can use IAM
attributes when deciding which agents
to issue badges to or which scopes to
allow.

Gateways call CapisclO as an external
authorization service or native plugin,
verifying badges and consulting policies
before routing requests.

CapisclO uses existing key management
to sign badges. Agents never receive
direct access to master keys; Vault or
KMS remains the key custodian.

CapisclO streams audit events into
existing observability and SIEM tools,
using their dashboards, alerts, and
workflows rather than replacing them.

CapisclO can delegate certain decisions
to existing policy engines, or be called
by them as a source of truth about agent
identities and scopes.

DLP rules can reference agent identity
and badge scopes to apply stricter
controls to specific agents, tools, or
workflows, and to drive targeted
investigations when violations occur.

26

This coexistence model matters operationally. Adopting CapisclO should feel like adding a focused trust
network for agents on top of familiar building blocks, not like replacing the security stack that teams have
spent years standardizing.

8.4 Deployment And Cost Models

CapisclO is intended to fit into existing budget categories rather than introduce entirely new ones.
Conceptually, there are two layers to consider:

e An open source core that provides client libraries, SDKs, and reference gateways to issue and
verify badges, integrate with MCP and A2A, and emit audit events.

* A managed control plane and registry that operates at scale, with high availability, multi region
support, long term audit storage, and enterprise integrations.

Organizations can start by experimenting with the open source components in non production
environments, then move to a managed control plane for production to avoid building and operating their
own high availability trust infrastructure.

From a budgeting perspective:

e The managed control plane typically maps to platform or security tooling spend, similar to other
platform security services such as IAM platforms, APl gateway licenses, or policy engine
subscriptions.

e Internal engineering work maps to platform engineering or Al platform initiatives that are already
underway.

You do not need to decide on a final deployment model on day one. The important decision is to establish
a coherent trust model for agents. Whether that model is backed by a fully self hosted CapisclO
deployment, a managed service, or a hybrid approach can evolve as usage grows.

A simple way to present options is:

¢ Pilot stage. Self host or use a sandboxed managed instance for one agent and one workflow.

e Early production. Managed control plane with limited agents and environments, focused on high
value workflows.

* Broad rollout. Managed or hybrid control plane integrated across multiple business units, with
formalized governance, registry processes, and incident response playbooks.

This sets expectations without discussing specific pricing and leaves room for different organizational
preferences about control and outsourcing.

CapiscIO White Paper ¢ Rev 2.0 27

9. Roadmap And Ecosystem

9.1 Standards Alignment And Open RFCs

CapisclO is built on the assumption that the agent ecosystem will continue to standardize around a small
set of core protocols and governance frameworks. The project is aligning with:

e MCP as the primary way agents discover and call tools and data sources.

e A2A as the emerging standard for agent discovery, agent cards, and cross ecosystem
coordination.

e OWASP Agentic Top 10 as a concise articulation of the technical risks that agentic systems
introduce.

e WEF "Al Agents in Action” and related governance efforts that frame agents as first class actors
needing classification and progressive controls.

CapisclO publishes its own design in open RFCs:

e RFC-001: Agent Governance Control Plane (AGCP). Defines the Golden Rule, delegation chains,
Trace ID structure, policy decision points, and enforcement patterns.

e RFC-002: Trust Badge Specification. Defines the JWT structure, DID methods (did:key and
did:web), Trust Levels 0—3, badge lifecycle, and revocation.

e RFC-003: Key Ownership Proof (PoP). Cryptographic proof of key ownership during badge
issuance and verification, now implemented in the CLI and SDK.

The intent is to make the trust model inspectable, interoperable, and available for feedback from vendors,
standards bodies, and early adopters, rather than hiding it inside proprietary code. All RFCs are available
at docs.capisc.io/rfcs.

9.2 Future Capabilities

The initial focus of CapisclO is on per agent identity, scoped badges, an attested registry, and a policy
and audit plane that work over MCP and A2A.

Planned extensions include:

¢ Richer trust scoring and signals. Incorporating additional inputs such as behavioral history,
verification status, and third party attestations into decisions about which agents to trust for which
actions.

e Ecosystem level views. Providing organization and sector wide views of agent deployments, to
help identify concentrations of risk and common patterns.

¢ Additional reference implementations. Expanding the set of official integrations and examples for
popular agent frameworks, gateways, and orchestrators, in order to reduce friction for builders.

CapiscIO White Paper ¢ Rev 2.0 28

These capabilities are intended to remain consistent with the core design principle: humans write the
rules, agents carry the proof.

9.3 Call To Action

CapisclO's value increases as more participants adopt a consistent trust model for agents. Here is how to
start:

Builders: Try It Now

pip install capiscio
capiscio key gen
capiscio agent-card validate ./agent-card.json

Generate an identity, validate your agent card, and integrate Guard into one workflow this week.

Security Leaders: Define the Standard

Before your next agent pilot goes to production, establish a baseline: every agent needs a verifiable
identity, scoped privileges, and auditable actions. Use CapisclO's Trust Levels (0-3) as a starting
framework.

Vendors: Build Trust In

If you provide agent frameworks or MCP servers, treat Trust Badge verification as a first-class feature.
Your customers will ask for it.

The goal is not to create another proprietary island. It is to converge on a shared, practical way to apply
identity, least privilege, and accountability to autonomous agents, so that organizations can deploy them
confidently at scale.

Next Steps

» Documentation: docs.capisc.io
» RFCs: docs.capisc.io/rfcs
e GitHub: github.com/capiscio

o Contact: hello@capisc.io

CapiscIO White Paper ¢ Rev 2.0 29

Appendix A. Commentary On Remaining OWASP Agentic Risks

Several of the remaining OWASP Agentic Top 10 risks, particularly prompt injection and unsafe tooling,
can cause severe harm if left unaddressed. They require dedicated mitigations in model selection, prompt
engineering, application design, and organizational process. CapisclO's role is to make those mitigations
more targeted and auditable by providing stable agent identity and explicit privilege boundaries.

Prompt Injection And Manipulation

Prompt injection attacks cause agents to override instructions or leak information. They are primarily
mitigated through prompt design, model choice, tool sandboxing, and robust evaluation.

CapisclO does not prevent prompt injection inside a model. It helps by:

* Ensuring that only authenticated agents can call sensitive tools.

e Limiting the scope of what a compromised agent can access through badge scopes and policy.

e Enabling forensic reconstruction of what actions an agent took after a suspected injection, with full
provenance.

Data Leakage And Exfiltration

Agents can inadvertently expose sensitive data to external systems or users. Mitigations include data
classification, content scanning, restricted tools, and strict egress controls.

CapisclO does not classify or inspect content. It supports these efforts by:

e Tying data access to specific agents and badges, which can be used as conditions in data loss
prevention policies.

e Recording agent actions so that exfiltration events can be traced to specific identities and
contexts.

e Allowing rapid revocation of access when leakage is detected.
Model And Tool Supply Chain Risks

Compromise of models, tools, or third party components introduces hidden vulnerabilities. Mitigations
focus on supplier due diligence, signed artifacts, reproducible builds, and runtime validation.

CapisclO does not verify model weights or binary integrity. It adds value by:

e Capturing provenance of agents and their declared tools in the registry.
e Allowing policies that restrict high risk agents or tools based on registry metadata.

e Providing a catalog of where specific models or tools are used via their associated agents.

CapisclO White Paper ¢ Rev 2.0 30

Unsafe Tooling And Actuation

Agents that can take physical actions or high impact operations, such as deploying code, moving money,
or controlling devices, pose special risks. Mitigations include human in the loop controls, strong
application level authorization, and sandboxing.

CapisclO does not decide whether an action is safe at a business level. It helps by:

e Requiring explicit scopes for high impact tools in Trust Badges.

e Enforcing human approval steps at the policy layer before issuing badges that allow certain
actions.

e Making it possible to disable entire classes of tooling for specific agents or environments quickly.
Misalignment And Goal Drift

Agents can pursue objectives in ways that conflict with organizational goals or ethical constraints.
Mitigations include careful system design, monitoring, evaluation, and escalation mechanisms.

CapisclO does not address goal alignment inside the model. It supports surrounding controls by:

e Providing reliable identity and provenance for agents so that monitoring and evaluation signals can
be tied to the right actors.

e Allowing organizations to adjust or revoke capabilities for misaligned agents without code changes.

e Enabling dedicated governor or auditor agents that observe and enforce policies across other
agents, using the same trust rails.

Privacy And Compliance Gaps

Agents operating over personal data and regulated information can create compliance violations if
controls are incomplete. Mitigations involve legal frameworks, data minimization, user consent, and
technical enforcement.

CapisclO does not replace legal compliance work or privacy engineering. It contributes by:

e Making it possible to restrict certain agents from accessing regulated data domains at the badge
and policy level.

¢ Producing auditable records that can support compliance reporting and investigations.

e Allowing regulators or third party auditors to verify agent identity and authority when reviewing
incidents.

In each of these categories, CapisclO should be viewed as an enabling control. It makes other mitigations
more targeted and auditable by ensuring that agents have stable, verifiable identities and that their
privileges can be managed explicitly.

CapisclO White Paper ¢ Rev 2.0 31

(k(g

CapisclO

Trust Infrastructure for the Agentic Era

Website: capisc.io
Documentation: docs.capisc.io
GitHub: github.com/capiscio

RFCs: docs.capisc.io/rfcs

© 2025 CapisclO LLC. All rights reserved.

CapiscIO White Paper Rev 2.0

